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Light Velocity in Nonrelativistic Quantum 
Mechanics on a Circle 
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A single-valued Schr6dinger wave function on a circle is discussed in the 
framework of the path integral. It is clarified how the light velocity comes 
into play and how terms corresponding to superluminal transmission of signals 
are suppressed. 

1. INTRODUCTION 

In this paper we investigate Schr6dinger wave functions on a circle, 
which is the simplest case of multiply connected spaces. We use the Feynman 
path integral approach to quantum mechanics, although our result is indepen- 
dent of the formalism. It is known that single-valued wave functions for 
multiply connected spaces are obtained when we add up the contributions 
from the paths corresponding to all the homotopy classes with an equal 
weight (Schulman, 1968, 1971; Berry, 1980; Yabuki, 1986). For the one- 
dimensional Lagrangian 

L--�89 2 (1) 

the ordinary Feynman kernel for the transition (to, x0) ---> (t, x) is given by 

K(x ,  t; Xo, to) = ~rih - to). i m ( x  - xo) 2 
exp 2 h t  (2) 
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When the particle moves on a circle with radius a, we have the follow- 
ing kernel: 

(2~rih(~- t~ -1'2 im(x + 2"rran - x~ (3) 
Kc(x, t; x0, to) = -- exp 2ht 

where - 'rra - x0 < -rra, - ~ a  -< x < "rra. The integer n denotes the homotopy 
class corresponding to the path winding the circle n times. The above kernel 
Kc(x, t; Xo, to) gives a single-valued wave function t~(x, t) for an initial single- 
valued ~(x0, to). 

When the initial wave function ~(x0, to = 0) is the Dirac delta function 
~(x0), then t~(x, t) = Kc(x, t; 0, 0) for t > 0. In this case the probability 
amplitude for finding the particle at x (for 0 < t < 7ralc, say) receives 
nonnegligible contributions even from large n's, since each term in the sum 
in equation (3) is of equal magnitude. Here c denotes the light velocity. (In 
a space whose dimension is greater than or equal to 2, contributions coming 
from nontrivial homotopy classes usually correspond to big deviations from 
classical paths and result in negligibly small values due to cancellations 
among rapidly oscillating factors of nearby paths.) In our case, nonnegligible 
contributions from terms with n :~ 0 (for 0 < t < ~alc) mean the transmission 
of signals faster than light. 

Here, however, we are faced with a pathological situation (Schulman, 
1981). This can be seen by rewriting K~(x, t; 0, 0) as follows: 

( ~ ) - , , 2  ( imxZ)~]  [i2~r2a2mn2~ [i2~rmanx~ 
Kc(x, t; 0, 0 ) =  exp - ~  . . . .  exp,. ~-] .)exp,- ~ ) 

imx z 
. ,  ,4, 

where ~3(v, T) is the Jacobi theta function (Whittaker and Watson, 1927), 

~3(v, "r) = ~ exp(i~vrn z) exp(i2~mv) (5) 

with 

amx 27rma z 
v -  ht ' "r -  ht (6) 

It is known that O3(V , T) is analytic for Im('r) > 0 and I vl < ~ with 
quasiperiodicity in v with periods 1 and "r, and that it is zero at (1 + "r)/2. 
From these facts it follows that zeros of O3(v, "r) are dense on the real axis 
of v if "r is real and irrational. 
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Therefore, we cannot draw any physical conclusion from the expression 
(4) as it stands. 

2. SUPPRESSION OF S U P E R L U M I N A L  T R A N S M I S S I O N  OF 
SIGNALS 

In this section we would like to clarify the above situation, starting from 
the following 'realistic' choice for our initial state ~b(x0, 0), -~ra --- x0 < xra: 

qffx0, 0) = ~ e x p [ - -  (7) 
~/2~s k 2 

Then the wave function t~(x, t), t > 0, is obtained as follows: 

I; tlt(x, t) = K~(x, t; Xo, O)O(Xo, O) dxo 
" f f a  

( m )112 1 1_~o [ x ~  + i  m ( x ~  
2 ~  ~ s s  exPt-~s2 2h-t dxo 

n = - - 0 0  

~o 1 x {" (x + 2"lran)2~ 

1 { ix 2 is 2) ) = x/~--~ ~ eXPtz(w~_-- .03(v' "r) (8) 

where we defined 
h \1/2 
~ )  ax 2"rra2 (9) 

W = , V - -  W 2  - -  i s  2 , T - -  W 2  - -  i s  2 

The appearance of the positive imaginary part in "r, 

Im('r) = 2 ~ r a 2 s 2 ] ( w  4 + s 4) (10)  

means exponential damping in the series expansion (5) of the Jacobi theta 
function. 

Let us first consider the case where the ratio 

- 

c t  
(11) 

is much smaller than 1, where we have put the Compton wavelength of the 
particle to be k, 

h 
k - (12) 

m r  
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(For example, if the width of the wave packet of the initial wave function 
of an electron s = 10 -3 cm and t = 1 0  - 2  sec, we have s/w ~-- 10-2.) In this 
case we have a damping factor exp - (2arasnlw2)212 in the series expansion 
of O3(v, "r). Since the exponent of this factor is minus one-half of the square 
of the ratio 

27rasn s 27ran 
w 2 h ct (13) 

we find that the series in a~3(v, "r) receives contributions only from terms with 
n such that 2xralnl < ct, since the ratio s/k cannot be made less than 1 in 
realistic situations. The same conclusion may be drawn from the second 
exponential damping factor in (5), exp[-(s/w)2(x/h)(27ran/ct)], if (s/w)2(x/h) 
> 1. This result means that the terms corresponding to the superluminal 
transmission of signals (2-tralnl > ct) are exponentially suppressed. The 
velocity of light appears naturally in nonrelativistic quantum mechanics 
through the Compton wavelength of the particle. 

On the other hand, if the ratio s/w is bigger than 1, then the exponential 
damping factor is roughly exp[-(2axan/s)Z/2] • exp[-(x/s)(2~ran/s)]. In this 
case, the term with n = 0 dominates in O3(v, "r), since s, the initial spread 
of the wave function, must be much smaller than 2ara in order to give meaning 
to our problem. 

Up to now, we considered only the Jacobi theta function a~3(v, x) in 
equation (8). There is another factor exp[(i/2)(x2/(w 2 - is2))] in front of 
a~3(v, a') in equation (8). The analysis of this factor with respect to its behavior 
for large Ixl gives a result consistent with the above conclusion. 

3. DISCUSSION 

In our one-dimensional case investigated above, the sum over the paths 
corresponding to a nontrivial homotopy class n (~  0) gives the contribution 

(2~rih~-_/~ -it2 exp im(x+2~ran-2ht x0)2 (14) 

to the integration kernel Kc(x, t; x0, to). The magnitude of this term is the 
same as that with n = 0. When we look back at the argument of the preceding 
section, we find that the suppression of the superluminal propagation of the 
particle has resulted from the cancellation among contributions from the paths 
that differ slightly in their respective starting points. In fact, we integrated 
over the contributions from these paths by putting a Gaussian weight in the 
initial wave function. See the second line of equation (8). (It would be easy 
to convince oneself that the superposition of terms of different final points 
gives another suppression of superluminal paths.) 
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Therefore, this mechanism for the suppression of nonclassical, superlu- 
minal paths is essentially the same as in the case of higher dimensional 
spaces, namely the cancellation among nearby paths. The difference is that, 
in the case of higher dimensions, nonclassical paths sum up to give, ordinarily, 
contributions to the integration kernel which are very much smaller in magni- 
tude than the main term corresponding to the classical path, that is, we have 
the suppression before the superposition of terms of different initial points. 

In conclusion, concerning actual situations, the light velocity c comes 
into play from the inevitable limitation of the size of localization of the 
particle, that is, from the Compton wavelength hlmc of the particle in question, 
and we have the suppression of contributions from paths corresponding 
to superluminal travel. In spite of the fact that quantum mechanics is a 
nonrelativistic theory, its wave nature manages to cancel out communications 
faster than light. 
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